Laplace Problem 2

For the network shown below, $H(s)=\frac{Y(s)}{X(s)}$ is the network function and $h(t)$ is the corresponding impulse response. It is known that
$h(t)=\left[2 e^{-t}+3 \cos 2 t-1.5 \sin 2 t\right] \mathrm{U}(t)$

a) Find $H(s)$ and identify its poles and zeros in the complex plane
b) Find $y(t)$ when $x(t)=\sin (t) \cdot \mathrm{U}(t)$ by taking the inverse Laplace transform of $H(s) X(s)$. (Note: you could use the convolution theorem, but in this case it would be a LOT more work!)

Is there anything unusual or unexpected about this $y(t)$? Any idea of why this happened?

